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ABSTRACT High energy electron reflection (HEER) is an important technique in surface 
science and uses the information carried by high energy electrons reflected from surfaces to study 
surface structures and surface electronic states. With the development of reflection high energy 
electron diffraction (RHEED), high energy electron microscopy (REM), and high energy electron 
energy loss spectroscopy (EEL) in surface science, the usefulness of HEER has been widely recog- 
nized and demonstrated. However, a stationary dynamical solution for an arbitrary surface for 
HEER has not been obtained yet. 

In this paper, some developments in understanding the dynamical theory of HEER, particularly 
in recent years, are reviewed: 

Bloch wave method, Crystal surfaces, Multislice, Surface science 

1. The introduction of the concept of current flow for a semi-infinite crystal model has removed 
the confusion around the wave points in the “band gap.” 

2. The consistency between the Bloch wave and multislice in the Bragg case has verified the 
validity of the argument of current flow and led to the emergence of the BMCR method (Bloch wave 
+ Multislice Combined for Reflection). 

3. The failure of the Bloch Wave-Only solution (the BWO solution) on Au (110) surfaces in the 
Bragg case revealed by the BMCR method implies that previous BWO calculations in the Bragg 
case might be at fault. 
4. The 2-D dependence of the electron wave fields and Picard iteration-like character of multislice 

calculation in the Bragg case has led to the emergence of an Edge Patching method in Multislice- 
mode-Only (the EPMO method). The new method yields an infinitely convergent stationary dy- 
namical solution for an arbitrary surface. 

INTRODUCTION 
High energy electrons reflected from a crystal sur- 

face can be used for surface investigations in both real 
space (reflection high energy electron microscopy, 
REM) and reciprocal space (reflection high energy elec- 
tron diffraction, RHEED), and the energy can also be 
analyzed to  obtain information about surface electronic 
states (reflection high energy loss spectroscopy, EEL). 
The combination of these approaches has proved to be 
a powerful tool to study the structure and electronic 
states of crystal surfaces and the correlation between 
the two. The advantages of using reflected high energy 
electrons can be listed as: 1) short wavelength and high 
resolution in images; 2) high surface sensitivity for 
small glancing incident angle; and 3) ability of modern 
techniques to combine the three different approaches 
together in the microscope, which will lead to a combi- 
nation of surface science and traditional electron mi- 
croscopy. 

With the recent development of ultra-high vacuum 
(UHV) techniques and electron optical systems, there 
has been a revival of interest in HEER, as opposed to 
low energy electron reflection (LEED) which is also 
used for both imaging (REM) and diffraction (LEED). 
Experimentally, the new revival has been enhanced by 
the studies of surface features using high resolution 

REM and developments in the studies of molecular 
beam epitaxy (MBE) using RHEED patterns. 

HISTORIC REVIEW OF HIGH ENERGY 
ELECTRON REFLECTION (HEER) 

Since 1933, when Ruska first imaged the surface of 
solids with high energy electrons reflected from the 
surface, REM has experienced an unsteady develop- 
ment (Borries, 1940; Fert and Saport, 1952; Menter, 
1953). This is due to the competition of other surface 
imaging techniques, such as the replica technique for 
transmission electron microscopy (TEM), scanning 
electron microscopy (SEM), and now scanning tunnel- 
ing microscopy (STM). 

Interest in REM was revived in the 1970’s by Cowley 
and Hojlund Nielsen (1975; Hojlund Nielsen and Cow- 
ley, 1976) with the emphasis put on diffraction contrast 
combining both reciprocal space and real space analy- 
ses. Since then, REM experiments have been done with 
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ordinary as well as specially modified UHV electron 
microscopes. The types of specimens studied include 
metals, semiconductors, and insulators (Hsu, 1983; 
Hsu and Cowley, 1983; Hsu et al., 1984; Osakabe et al., 
1980, 1981a, b; Shimizu et al., 1985, 1987; Uchida et 
al., 1984a, b). More detailed investigations on various 
crystal surfaces by REM are continuously reported 
(Lehmpfuhl and Uchida, 1988; Uchida and Lehmpfuhl, 
1987a, b; Yao and Cowley, 1988). 

Unlike REM, since Nishikawa and Kikuchi (1928a, 
b) first obtained the RHEED pattern, the development 
of RHEED technique has been rather steady. This is 
mainly because in many cases it is used with a simple 
RHEED camera instead of being associated with a com- 
plicated electron optical system. 

The usefulness of RHEED was recognized from its 
early applications in surface studies, such as oxide 
films on crystal surfaces, metal films formed by liquid 
phase epitaxy (LPE) (Miyake, 1937a, b; Uyeda, 19401, 
and surfaces covered by organic molecules (Kainuma 
and Uyeda, 1950). Since then RHEED has been widely 
used in surface science as an alternative technique to 
LEED for studying surface reconstruction, nucleation, 
crystallization, varied surface features, and the mech- 
anism of crystal growth (Bertrand et al., 1985; Cohen 
et al., 1986; Houzay et al., 1984; Ino, 1977; Pukite et 
al., 1987). An impressive development in RHEED was 
made by Ino’s group (Gotoh and Ino, 1978; Ino, 1980). 
The RHEED patterns taken by Ino et al. are much 
clearer and more informative than any other obtained 
before and reveal the full power of RHEED for surface 
investigation. 

A recent important development in RHEED was the 
discovery of the correlation between intensity oscilla- 
tion in RHEED pattern and crystal growth on a surface 
during molecular beam epitaxy (MBE) (Harris et al., 
1981a, b; Wood, 1981). Because the periodicity of oscil- 
lation in all observations corresponds exactly to the 
growth of a single monolayer, it provides an absolute 
measurement of the growth rate. 

Another new development in RHEED is spot split- 
ting which was first observed in RHEED half a century 
ago (Nishikawa and Kikuchi, 1928a, b). Pukite et al. 
used sensitive measurements of the RHEED spots to 
show that the spot splitting is related to both the vic- 
inal angle of surfaces and incidence azimuth (Pukite et 
al., 1983; Pukite and Cohen, 1987). 
HISTORIC REVIEWS ON DEVELOPMENT OF 

DYNAMICAL THEORY FOR HEER 
With the development of HEER techniques, tremen- 

dous efforts have been put into the development of dy- 
namical theory for HEER. However, compared to elec- 
tron transmission, the development of a dynamical 
theory for electron reflection has been slow. This is 
largely due to  the complexity of the boundary value 
problem and the nature of the Bloch wave in the Bragg 
case. Like the dynamical theory for high energy elec- 
tron transmission (TEM), the early development of dy- 
namical theory for HEER was based upon the Bethe 
theory (or Bloch wave method) (Bethe, 1928). The 
Bloch wave method uses a plane wave expansion to 
convert the Schrodinger equation in real space into one 

in momentum space which is also a dispersion equation 
defining the E-k relation. The difference between en- 
ergy band theory and Bloch wave theory for electron 
diffraction is which variable, E or k, is taken as an 
independent variable in the E-k relation (E is the total 
energy of an electron in a given system and k the crys- 
tal momentum). 

Since the earliest development of HEER techniques, 
the Bethe theory has been widely applied for interpre- 
tation of phenomena in RHEED (Kawamura et al., 
1976; Kohra, 1962; Miyake et al., 1954). However, for a 
long time, the way of handling a complex dispersion 
surface and the wave points in the “band gap” was a 
problem. In the 1970’s, Colella (19721, Colella and Me- 
nadue (1972), and Moon (1972) introduced an alterna- 
tive way of applying the Bloch wave method to electron 
reflection. To avoid the dilemma of determining ex- 
cited wave points on a complex dispersion surface, an 
additional bottom boundary was introduced. The 
method has two disadvantages: 1) The computation 
speed slows down by introducing a 2N x 2N matrix (N 
the number of reciprocal lattice points included) and 
one additional bottom boundary. 2) The physical mech- 
anism of reflection is concealed in the numerical pro- 
cesses. There are also two methodical problems for the 
approach: 1) The crystal potential is truncated at the 
top atomic layer while a real surface potential expo- 
nentially extends into vacuum. This was later dis- 
cussed by Britze and Meyer-Ehmsen (1978) using the 
WKB method. 2) The surface sensitivity of HEER can- 
not be taken into account. The Bloch wave method ba- 
sically is one for bulk phenomena since it always takes 
a crystal as infinite or semi-infinite bulk, while both 
experimental and numerical investigations have 
shown that HEER is highly sensitive to the structure of 
the first few atomic layers. 

The Bloch wave method in principle is only suitable 
for a perfect and periodic crystal, while a lot of surface 
phenomena result from surface imperfections, such as 
surface steps, clusters, dislocations, reconstructions, 
relaxations, and a surface potential. This means that it 
is necessary to find alternative methods which are 
adapted to surface imperfections. Borrowing the con- 
cept of slice used by Darwin (1914) for X-ray diffraction 
and Howie and Whelan (1977) for TEM, Maksym and 
Beeby (1981) developed a method for electron reflec- 
tion in which a crystal is considered perfect and peri- 
odic in a plane parallel to the surface, and non-periodic 
modulation of the potential only occurs in the direction 
normal to the surface. Therefore, we here call it a “par- 
allel multislice” method to distinguish it from later 
discussed “vertical multislice” methods. The limitation 
of the approach is that it is inherently unsuitable for 
calculating reflection waves from the crystal defects 
involving structural variation in a plane parallel to the 
crystal surface, and the sampling rate along the direc- 
tion normal to the surface and incident beam is low. In 
addition, the physical insights of electron reflection are 
generally not available for the method. Another mul- 
tislice approach for reflection dynamical calculation 
introduced by Peng and Cowley (1986,1988) was based 
upon the multislice formulation developed by Cowley 
and Moodie (1957, 1959a, b). Here, the slices of crystal 
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are taken normal to the surface as they are for profile 
image simulations for TEM. Therefore, we call it a 
“vertical multislice” method. Because there is no re- 
striction on the way of constructing the phase grating 
of slices, it is possible to include any desired modifica- 
tion of the surface structure, and surface potential is 
also automatically included in the phase grating. This 
is the most significant feature of the method. However, 
edge effects inherently stand in the way of getting a 
stationary solution and limit its application to real 
problems in HEER. In addition, like other numerical 
methods in which the physics usually is concealed by 
numbers, this method is also not convenient for explor- 
ing the physical insights of HEER. 

BLOCH WAVE METHOD FOR HEER 
The idea behind exploiting the Bloch wave method 

for HEER is to combine the Bloch wave method and the 
“vertical multislice” method to overcome the disadvan- 
tages of the two individual methods: the inconvenience 
for surface imperfections of the Bloch wave method and 
the edge effects of the multislice. 

For electron reflection from a crystal surface, a phys- 
ically correct model is a semi-infinite crystal model. 
However, this model encounters a decades-long di- 
lemma: how to determine excited wave points on a com- 
plex dispersion surface. For a semi-infinite crystal, the 
number of excited wave points, i.e., excited Bloch 
waves, should be no more or no less than the number of 
reciprocal lattice points included: N. Mathematically, a 
semi-infinite crystal only has one boundary with vac- 
uum, which gives 2N equations for the continuity of 
the wave function and the derivative of the wave func- 
tion. Therefore, only N Bloch waves can be included, 
otherwise the problem has no unique solution. Note 
that the number of possible Bloch waves from the dis- 
persion equation (E-k relation) is always 2N. Physi- 
cally, for a semi-infinite crystal, there should be no 
back reflections from the bottom boundary. There are 
two critical questions: 1) how to define a Bloch state as 
a “forward state” or “backward state,” and 2) whether 
the number of the ‘(forward or “backward” states is N 
or not. Several authors (Kawamura et al., 1976; Kohra 
et al., 1962; Miyake et al., 1954) have discussed the role 
of energy flow in this problem, but no detailed ap- 
proach was given. This problem can be solved by intro- 
ducing the concept of current flow (Ma and Marks, 
1989; Marks and Ma, 1989). 

In general, the orientation of a wave is determined 
by its energy flow instead of its momenta. The energy 
flow of an electromagnetic wave is defined by the 
Poynting vector S = (1/2)E x H and is carried by the 
medium-electromagnetic field. A matter wave is in- 
terpreted as a wave of “probability,” for which there is 
no medium, so the energy is carried by particles. There- 
fore, the probability current flow for a matter wave 
corresponds to the Poynting vector for an electromag- 
netic wave. The equivalence between the energy flow 
and current flow for a matter wave and the dispersion 
surface has been discussed in detail elsewhere (Ma, 
1989). 

The current flow of a Bloch wave can be easily de- 
rived analytically by substituting the wave function of 

a Bloch wave into the general form of the current flow 
of a matter wave (Ma and Marks, 1989; Marks and Ma, 
1989): 

Sti) = (2~rh/rn)exp[-4~rk’~’ TI[Z,IC,~)~~ (kro) + g)l (1) 

where kr6’ is the real part of the wave vector, k’u’ the 
imaginary part of the wave vector, {Cpti’}.the coeffi- 
cients of a plane wave g. The superscript J denotes a 
specific excited Bloch state. Equation 1 shows that the 
current flow of a Bloch wave is proportional to the 
expectation value of its all possible wave momenta (p 
= hk), if the wave function is normalized: Zg:gJCgo)12 = 
1. The z component of S is given by 

S,”) = (2.rrh/rn)exp[-47~kZ’~’zI[~~l Cgti)lz(kcu) + gJ1. (2) 

If the z axis is set as the inward normal to the sur- 
face, the Bloch wave which ph sically exists in a semi- 
infinite crystal must satisfy s!’ ? 0 and k,’O) > 0. This 
becomes the criterion for determining excited Bloch 
waves in a semi-infinite crystal. 

The signs of S,”’ and k,‘O’ can be used to characterize 
four kinds of different Bloch waves: 

1. VI = 0 (no absorption), S,”’ = 0 9 2  k i(i) = 0; a non- 
evanescent standing wave in an ideal medium. 

2. VI = 0 (no absorption), S,”’ = 0, k,’O’ # 0; an 
evanescent standing wave in an ideal medium. 

3. VI = 0 (no absorption), S,”’ + 0 ,  k,’6’ = 0;  anon- 
evanescent propagating wave. Note that in the me- 
dium without absorption, there is no Bloch wave with 
S,“’ # 0 and k,’O’ + 0. In other words, there is no 
“evanescent propagating wave.” 

4. VI > 0 (with absorption), SZG’ > 0,  k,’o’ > 0 or Szo’ 
< 0 ,  k,’O’ < 0;  an evanescent standing wave or a non- 
evanescent propagating wave in the medium with ab- 
sorption. 

When absorption is introduced, the mechanism of ev- 
anescence and absorption are mixed with each other 
and both of them are characterized by S,“’ > 0 and k,’O’ 
> 0 or Szo) < 0 and k,’O’ < 0. Table 1 shows the numer- 
ical results for a GaAs (001) surface for the case both 
with and without absorption. The beam direction is 
along the [OlO] Laue zone axis and 9 beams are in- 
cluded. For the absorption, the imaginary parts of the 
Fourier potential coefficients were taken as 10% of 
their real parts. The results indicate that in a medium 
with absorption, the magnitude of ki6’ for an evanes- 
cent wave is much larger than that for a non-evanes- 
cent Bloch wave since the decay of an evanescent wave 
is due to both the evanescent mechanism and the ab- 
sorption in the evanescent region rather than only the 
absorption of a non-evanescent Bloch wave. The results 
also show that the number of,Bloch waves satisfying 
the condition S,“’ 2 0 and k,’O’ 2 0 is exactly N both 
with and without absorption. 

For the Laue case, the dynamical theory has not en- 
countered the difficulty of determining excited wave 
points on dispersion surface and the requirement of the 
current flow analysis, because in the Laue case Ik,’”’J 
>> lg and k,’O’ = 0. These two relations result in 
S,”’k:d > 0,  i.e., the orientation of current flow along 
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TABLE 1 .  List ofthe Bloch waues for a 9-beam calculation for GaAs (001) surface' 

374 

ALL EXCITED BLOC6 WAVES 

WITBOUT ABSORPTION W I T 6  ABSORPTICN 

z1GlDavALms ENERGY FLOW z1GENVAGms R?cxGmLow 

(la) (S.1 (k.1 (S.) 

1 ( 0.73292+ 0.000001) ; 0.38051 1 ( 0.73315+ 0.015861) ; 0.38066 

2 4-0.73292+ 0.000001); -0.38276 2 (-0.73315+-0.015861); -0.38294 

3 ( 0.59945+ 0.000001): 0.26390 3 ( 0.60116+ 0.030881); 0.26517 

4 (-0.59945+ 0.000001): -0.27529 4 (-0.60116+-0.030881); -0.27645 

5 ( 0.35425+ 0.148881); 0.00000 5 ( 0.37829+ 0.130731); 0.02119 

6 ( 0.35425+-0.148881): 0.00000 6 ( 0.33023+-0.150931); -0.28858 

7 (-0.35425+ 0.148881) ; 0.00000 7 (-0.33023+ 0.150931) ; 0.29024 

8 ( 0.24535+ 0.097451): 0.00000 8 ( 0.26169+ 0.092111); 0.34682 

9 ( 0.24535+-0.097451); 0.00000 9 ( 0.22763+-0.107191); -0.05192 

10 (-0.35425+-0.148881); 0.00000 10 (-0.37829+-0.150731); -0.02133 

11 (-0.24535+ 0.097451) : 0.00000 11 (-0.22763+ 0.107191); 0.38846 

12 (-0.24535+-0.097451): 0.00000 12 (-0.26169+-0.092111); -0.08743 

13 ( O.OOOOO+ 0.149441); 0.00000 13 ( 0.02384+ 0.151341); 0.26040 

14 ( 0.11457+ 0.053971); 0.00000 14 ( 0.14531+ 0.070041); 0.90858 

15 ( 0.00000+-0.149441)~ 0.00000 15 (-0.02384+-0.151341); -0.02356 

16 ( 0.11457+-0.053971); 0.00000 16 ( 0.08571+-0.056881); -0.10634 

17 (-0.11457+ 0.053971); 0.00000 17 (-0.08571+ 0.056881); 1.01995 

18 (-0.11457+-0.053971); 0.00000 18 (-0.14531+-0.070041); -0.07001 

APPLICABLE BLOC6 WAVES 

1 ( 0.73292+ 0.000001); 0.38051 1 ( 0.73315+ 0.015861); 0.38066 

3 ( 0.59945+ 0.000001); 0.26390 3 ( 0.60116+ 0.030881); 0.26517 

5 ( 0.35425+ 0.148881); 0.00000 5 ( 0.37829+ 0.150731); 0.02119 

7 (-0.35425+ 0.148881); 0.00000 7 (-0.33023+ 0.150931) ; 0.29024 

8 ( 0.24535+ 0.097451); 0.00000 8 ( 0.26169+ 0.092111); 0.34682 

11 (-0.24535+ 0.097451); 0.00000 11 (-0.22763+ 0.107191); 0.38846 

13 ( O.OOOOO+ 0.149441); 0.00000 13 ( 0.02384+ 0.151341); 0.26040 

14 ( 0.11457+ 0.053971); 0.00000 14 ( 0.14531+ 0.070041); 0.90858 

17 (-0.11457+ 0.053971); 0.00000 17 (-0.08571+ 0.056881); 1.01995 

'The beam direction is along the [OlO] zone axis and the incident angle is 6.5 mRad. The beam azimuth with respect to (100) plane is zero and the incident energy 
100 keV. 
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Fig. 1. An outline of the computer program for calculating the 
n-beam Bloch wave solution in the Bragg case. 

the z axis is always the same as that of k vector. It 
should be noted that analyzing current flow in the 
Bragg case is not only significant for solving the bound- 
ary value problem but also useful for the understand- 
ing of physical insights of electron diffraction. 

Once the excited Bloch states in a semi-infinite crys- 
tal in the Bragg case have been determined, the rest of 
the problem-boundary match in the Bragg case-is 
almost the same as that in the Laue case, for which 
readers can refer to the paper by Metherell (1975). Fig- 
ure 1 shows an outline of a numerical development (Ma 
and Marks, 1989). 

BLOCH WAVE AND MULTISLICE COMBINED 
FOR REFLECTION (THE BMCR METHOD) 

A problem of the Bloch wave method is that when a 
large number of beams are used, the computation speed 
is slow, and the method is also not readily available to 
simulate surface imperfections. Various alternative 
methods are therefore still necessary. In principle, all 
different methods must be consistent with each other 
under certain conditions, if they are correct. This sug- 
gests that it is possible to combine different methods 

B 

BLOCHrMuLT(RF*MS l h l J  *BS 3 -  W C L L  IJLIWI I(*) 

Fig. 2. A Wave field outputs at different iteration thickness for 25 
mRad incidence, 13 x 13 beam, absorption of lo%, and 100 keV 
incident energy, for Au (001) surface. B Plots of the deviation param- 
eters D versus thickness for current density outputs in A. 

B .::“:a ”n, n6 1- N 

n onn , >o “q “rn nn 'ice ”” 0 nn 

E nr U $ 8 ,  H l h U C  Ir nA5 hl A ~ L  6 lourin 

Fig 3 Corresponding results under the same conditions as for 
Figure 2, except that the incident angle is 30 mRad 

and to  provide more powerful approaches. However, a 
precondition of combining different methods together 
is knowing their consistency conditions. The investiga- 
tion of the consistency between the Bloch wave method 
and multislice can provide a clear-cut mutual proof of 
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-EEM Surtoce 'm 
Fig. 4. The schematic diagram of the BMCR method. XJR) de- 

notes the incident wave vector in the reflection case and XJT) denotes 
the incident wave vector in the transmission case. The zero Laue 
zones for the two cases are perpendicular to each other. 

the validity of the two methods and the combination of 
them and may also reveal more physical information 
about electron-crystal interactions, which will be dis- 
cussed later. 

Fig. 5. Outputs of the wave fields in vacuum which include the 
Bragg reflected waves and the incident wave, from multislice itera- 
tions for the simulations of the surface with step-up (a), a flat surface 
(b), and the surface with step-down (c) .  The total thickness is 607.5 A. 
The thickness difference between two nearest slices is 50 A and the 
size of unit cell displayed is 4a x la,  extending from surface (right 
side) into vacuum (left side). The step is introduced at t = 101.2 h. 
The calculation conditions are the same as those for Figure 3. 

Consistency Between Bloch Waves and Their 
Multislicing in the Bragg Case 

The Bloch wave method is a direct application of the 
Schrodinger equation to electron diffraction, while the 
multislice method was first developed using a physical 
optics approach. The analytical derivation of multislice 
formula from the Schrodinger equation was first given 
by Ishizuka and Uyeda (1977); see also Ma (1989) and 
Ma and Marks (1989). The Schrodinger equation in an 
integral form is given by: 

a 

d 
+(r) = exp(i2ak.r) - ( 2 d 4 ~ r h )  J G(r - r')V(r')+(r') dr '  (3) 

where +(I) is the wave function and G(r) the Green's 
function. When the Green's function in the Schrodinger 
equation is written in the form of Rayleigh-Sommer- 
feld propagator (Gaskill, 19781, both the factoring of 
the wave function (+(r) = exp(i2.rrk-r)+(r)) and the 
Fresnel amroximation are unnecessarv. Moreover. the 

e 

f 

9 

Step-up Flat surface Step-doun 

16.2R 0 16.26 0 Fresnel approximation is incorrect for kultislice calcu- 

and Moodie (1957, 1959a, b) has the following forms: 
lations. Then the multislice due to Cowley Focal series (a-g): -3000, -2000, -~OOO,B, 10~0,2000,3000b 

Fig. 6. Focal series of one dimensional imaging contrasts by using 
specular beam alone, crossing the wave disturbance caused by the 
steps in the second last slice (t = 556.8 A) in Figure 5a-c. The defocus 
range is from -3,000 A to 3,000 A and defocus step is 1,000 A. 

+(q,zn+ = [+(q,z,) X Pg(q,z,+l - z,)].Pr(q,zn+ l-zn) 

or 

where q is a vector in the plane perpendicular to the 
beam direction along the z axis. For the Laue case, the 
two are consistent (Self et al., 1983). For the Bragg 
case, to test the consistency one can define a deviation 
parameter as (Ma and Marks, 1990a): 

where 1, denotes the intensity of the wave field calcu- 
lated by the Bloch wave method which is an input wave 
field of multislice iteration and 1, the intensity of the 
wave field output of multislice iteration at  thickness t. 
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Note that the xy plane here is perpendicular to the 
incident beam direction and the slices are set normal to 
the surface. The magnitude of D(t) reflects the degree 
of the consistency between the two methods while the 
derivative of D(t), dD(t)/dt, indicates the convergence of 
the solution. The effects of various parameters on D(t), 
such as incidence angle, total calculated beam number, 
absorption, etc., have been studied (Ma and Marks, 
1990a). Figures 2 and 3 are two calculated examples for 
fcc gold and the (001) surface. Figure 2A shows the 
wave intensity outputs at different thickness up to 
607.5 A for an incident angle of 25 mRad. Note that the 
incident energy for all calculations performed in this 
paper is 100 keV. The size of each slice is 8a x 2a (a 
denotes the magnitude of primitive unit cell vector of 
gold). The [ O l O ]  zone is taken as the zero Laue zone and 
the surface normal is coincident with the z axis. The 
incident beam azimuth with respect to the yz plane is 
zero and the plane of the figure is parallel to the zero 
Laue zone. The number of beams calculated for the 
Bloch wave calculation is 13 x 13. Figure 2B shows the 
plots of D(t) versus thickness t, where R.W. denotes the 
reflected wave, B.W. the Bloch wave in crystal, and 
T.W. the total wave. Figure 3 shows the results for the 
same conditions as those for Figure 2, except that in- 
cident angle is 35 mRad. These results clearly indicate 
that the consistency on the [OlOI zone between the two 
methods in the Bragg case is well preserved (D(t) < 1%) 
and the solution converges (dD(t)/dt = 0). It is impor- 
tant that the consistency is a confirmation of the cur- 
rent flow argument for the Bloch wave method. 

However, it should be noted that all these results are 
obtained for the Au (001) surface and the conclusions 
here cannot be automatically extended to the surfaces 
with higher Miller indices. This will be discussed later. 

2-D Dependence of the Bloch Wave and Picard 
Iteration-Like Character of Multislice Iterations 

in the Bragg Case 
Equation 4 is a recursive solution of Equation 3, and 

if the electron wave function is known at  the boundary, 
then the electron wave further down can be derived. If 
we have an electron wave field which is invariant 
along the z direction, Equation 3 has the following ap- 
proximate form: 

+(q,z) = [+(q,z) X P,(q,Z - zJl*p,(q,z - 20). (6) 

Note that this is an “equation,” not a “solution.” A true 
2-D solution of Equation 6 can be solved by the Picard 
iteration: 

+n+l(q,z) = [+,(q,z) x Pg(q,z - zO)l.Pr(q,z - z0) 
(7) 

+(q,z) = l&Jln(q,Z). (8) 

Figures 2 and 3 indicate that the intensity of the wave 
field l(r) = +(r)+*(r) in the Bragg case is independent 
of the distance along the beam direction when only the 
zero Laue zone is taken into account. In other words, in 
the Bragg case, the electron wave has the following 
form: 

Fig. 7. A: Wave fields calculated by using the BMCR method with- 
out the edge patching method for Au (001) surface. The thickness 
difference between any two nearest slices is 50 A. B: Wave fields 
calculated by using the BMCR method with the edge patching method 
for Au (001) surface. The thickness difference between any two near- 
est slices is 101.2 A. Both A and B are calculated under the same 
conditions as those for Figure 3. 

+(r) = +(q,y) = +’(q)exp[i+(y)l (9) 
where the z axis is inward normal to the crystal surface 
and the incident beam direction is along the y axis. q is 
a real space vector in the plane perpendicular to the y 
axis. Equation 9 can also be proved analytically (Ma, 
1990). 

Substituting Equation 9 into Equation 7 and consid- 
ering that the phase term +(y) has a linear relation 
with y, +(y) = cy, we obtain: 

+’(q)exp[i(n + 1)cAyI = (+’(q)exp[incAyl 
x P,(q,Ay))*P,(q,Ay). (10) 
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(b) Multislice (a) Bloch wave 

Fig. 8. Unit cell set-up and potential profile for the simulation of surface reconstruction and adsorp- 
tion. a: Unit cell with surface truncation for the Bloch wave calculation. b Unit cell for multislice 
calculation. The unit size is 8a x 2a, a = 4.0497 8. 

Equation 10 shows two aspects of the multislice itera- 
tion in the Bragg case: on one hand, for +’(q), each 
iteration is equivalent to a Picard iteration cycle; on 
the other hand, each iteration increments the phase by 
exp[icAy]. In other words, the difference between the 
wave fields of any two slices is only a constant phase 
term: exp[imcAy]. This Picard iteration-like character 
of the multislice calculation shows that solving the 
wave field at a thickness deep enough by multislice is 
equivalent to solving the Schrodinger equation by a 
Picard iteration and if the iteration converges, it must 
converge to the stationary solution. Based on this fea- 
ture, a new method which we call “Bloch wave and 
Multislice Combined for Reflection” (the BMCR 
method) was developed (Ma and Marks, 1990a, b). In 
this method, the Bloch wave solution for a free surface 
is taken as the input wave function for a multislice 
iteration, which is equivalent to the trial function of 
the Picard iteration for the stationary solution of an 
imperfect surface. Thus it reduced the edge effects of 
the multislice iteration down to the level which per- 
mits simulations of surface phenomena in a manage- 
able and reliable manner and combines the advantages 
of the Bloch wave method and multislice approach to- 
gether (stationary solution obtainable for the former 
and flexibility of surface imperfection simulation for 
the latter). Figure 4 shows a schematic diagram of the 
BMCR method. 

As an example of the use of the BMCR method, Fig- 
ure 5 shows the intensities of wave fields in vacuum for 
the surface with one step-up (a), a free surface (b), and 
the surface with one step-down (c). The size of each 
slice displayed is 8a x la.  The right end of each slice is 
the position of the surface. For an atomic step-up, one 
layer of gold atoms is added to the surface and for an 
atomic step-down, the outermost layer of gold atoms is 
taken away from the surface. The total iteration thick- 
ness in each case is 607.5 A, and the thickness differ- 
ence between the two nearest slices is 50 A. The inci- 
dent angle is 30 mRad. There are two points which 
should be pointed out: 1) These simulations are per- 
formed under the stationary condition and the wave 
fields converge to the original stationary state after 
about 250 A iterations during which the wave fields 
are disturbed by the steps. In other words, the transi- 

tion range of 200-250 A begins and ends with a sta- 
tionary state. 2) Wave field disturbances caused by sur- 
face steps and carried by the Bragg reflected waves are 
moving away from the crystal surface, which means 
that the information about the steps exists in each re- 
flected beam, and the image formed from any reflected 
beam will show the contrast of the steps. 

To simulate REM operation in an electron micro- 
scope, the specular beam was used for imaging and the 
optical axis tilted to be coincident with the specular 
beam. One dimensional images for the last slices in 
Figure 5a-c are shown in Figure 6. They are the plots 
of wave intensities versus the distance extending from 
the surface into vacuum (0-6 x 4.0497 A, from right to 
left). Each column is a focal series from -3,000 A to 
3,000 A. A contrast reversal with defocus is quite 
clearly demonstrated. The contrast of a free surface 
(central column) is due to numerical error. To quanti- 
tatively estimate the errors, the contrast level of each 
picture is calculated as CONTRAST = SD/MEAN, 
where SD is the standard deviation and MEAN is the 
mean level of the picture. The value of the CONTRAST 
is averaged over each focal series in Figure 6. We have 
three contrast levels for three different surfaces: 0.58 
(step-up), 0.13 (flat surface), and 0.31 (step-down). The 
error is from 22% to 40%. Note that the results suggest 
that the contrast level of a step-up is generally higher 
than that of a step-down. 

EDGE PATCHING METHOD 
The BMCR Method With Edge Patching 

The BMCR method provides a more favorable condi- 
tion for the simulation of HEER. However, it only re- 
duces the edge effects in multislice instead of eliminat- 
ing them. Later, it will be shown that even this 
advantage of the BMCR method is limited because the 
BWO solution can be far from the truEstationary so- 
lution when the zero Laue zone is [110] other than 
[OlOI. 

To obtain an infinitely convergent stationary solu- 
tion not limited by iteration thickness for an arbitrary 
crystal surface, one must solve the problem of the in- 
ward moving edge. Because there is only a constant 
phase difference exp[imcAyl between any two slices for 
the multislice iterations in the Bragg case, as indicated 
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by Equation 10, the deteriorated edge can always be 
replaced by the edge cut from the original input wave 
field as long as it is multiplied by a proper phase 
exp[imcAy]; c can be calculated either analytically or 
numerically. This is called “patching” (Ma, 1990). It is 
not necessary to  repair the deteriorated edge for each 
iteration because the moving edge seriously deterio- 
rates the solution only after a certain number of iter- 
ations and then the computation time will not increase 
significantly because of the “repairing.” The rate of 
deterioration of the edge primarily depends upon three 
parameters: incidence energy (Eo), incidence angle (Oo), 
and slice thickness (Az), and the frequency of repairing 
can be set self-adjustable in the program. 

Figure 7 shows a comparison between the wave field 
calculated with and without the edge patching using 
the BMCR method. The calculation conditions are the 
same as those for Figure 3, except that the displayed 
slice size here is 16a x l a  instead of 8a x 2a. The 
thickness between any two nearest slices in Figure 7A 
is 50.6 A, while it is 101.2 A in Figure 7B, i.e., the total 
thickness calculated in B is twice as large as that in A: 
1,113.2 A. The value in Figure 7A was calculated us- 
ing the BMCR method without edge patching, while 
that in Figure 7B was calculated using the BMCR 
method with the edge patching. The patched edge area 
in B is 113 of the area of the vacuum wave along the z 
axis. The continuity between the patched edge area 
and nonpatched area in B is clearly demonstrated and 
the deteriorated edge has disappeared. In other words, 
a convergent true stationary solution not limited by 
iteration thickness has been obtained. However, this is 
still not a real proof of the infinity of the convergence, 
because here, the Bloch wave solution as an input wave 
field of multislice iterations is already close to the true 
stationary solution. If the Bloch wave solution is far 
from the true stationary solution, there will be discon- 
tinuity between the patched edge area and non-patched 
area of the vacuum waves, for example, the true sta- 
tionary solution for a reconstructed surface will be 
quite different from the Bloch wave solution of a cor- 
responding non-reconstructed free surface. 

To examine this, calculations for a surface recon- 
struction and adsorption in RHEED were performed. 
Figure 8 shows the unit cell for the Bloch wave calcu- 
lation and the multislice iterations in Equation 6, 
which includes surface reconstruction or adsorption. 
The system used is fcc gold. The treatment of absorp- 
tion is the same as that for Figures 2 and 3. For the 2 
x 1 reconstruction or adsorption, the vertical dimen- 
sion of the unit cell needs to be two times larger than 
the primitive vector, so the size of the two unit cells is 
8a x 2a. The surface is set at (314,O) and the other 
calculation conditions are the same as those for Figures 
2 and 3. 

For the 2 x 1 gold surface reconstruction, one gold 
atom is placed on the site indicated in Figure 8b for 
each of four slices with no relaxation. For a 2 x 1 
chemisorbed oxygen surface, the gold atom was re- 
placed by an oxygen atom. Figure 10 shows output of 
wave intensities from multislice iterations for the 2 x 
1 gold reconstruction in A and the 2 x 1 oxygen ad- 
sorption in B. The series of output slice numbers are: 1, 

Fig. 9. A Wave fields calculated for the 2 x 1 Au (001) surface 
using the BMCR method with the edge patching method. B: Wave 
fields calculated for the 2 x 1 oxygen adsorption on an Au (001) 
surface using the BMCR method with the edge patching method. The 
series of output slice numbers are: 1,100,200,300,400,500,600,700, 
800,900,1,000,1,100, 1,300, 1,500, 1,700,2,050. The calculation con- 
ditions are the same as those for Figure 3. 

100,200,300,400,500,600,700,800,900,1,100,1,300, 
1,500, 1700, 2,050. The iteration thickness is up to 
2,075.5 A, which is much thicker than what was pre- 
viously possible. The last four slices in Figure 9A or B 
show that the stationary wave field for a surface with 
either reconstruction or adsorption has been reached in 
the non-patched area. The wave field in the patched 
areas is quite different from the stationary wave field 
in the non-patched area on the right because it is cut 
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Fig. 10. A RHEED patterns corresponding to  Figure 9A. B: RHEED patterns corresponding to Figure 9B. 

from the solution of a free surface. Nevertheless, this 
inconsistency does not affect the stationary solution of 
an imperfect surface in the non-patched area. This can 
be further demonstrated in reciprocal space. Figure 
10A and B show the RHEED patterns corresponding to 
Figure 9A and B. They are Fourier transforms of the 
vacuum waves excluding the patched areas in the 
slices in Figure 9A and B. It should be noted that the 
stationary character of these solutions is apparent. 
This phenomenon can be explained as the following: 

The vacuum wave in each slice is the superposition of 
two parts, the incident wave and the Bragg reflected 
waves. The Bragg reflected wave front always moves 
away from the crystal surface while the incident wave 
front moves towards the crystal surface, which is the 
major source of the edge effects. When the edge patch- 
ing is carried out, both of them are multiplied by a 
constant phase term. In the case of poor trial function, 
the Bragg reflected wave components may be far from 
the true solution, but the incident plane wave is always 
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the same. Because the wave front of the Bragg re- 
flected waves always moves away from the surface, it 
does not matter if they are close to the true solution. 
What is important is the continuity of the incident 
plane wave field for each patching and iteration. This 
is the reason why the infinitely convergent true sta- 
tionary solution is reached with a “bad” input trial 
function. 

The Edge Patching Method in Multislice-Only 
Mode (the EPMO Method) 

The above argument implies that a plane wave 
should also be usable as a trial wave, since only the 
incident plane wave component in the patched area is 
significant to the continuity of multislice iterations. In 
other words, an independent computation method 
called “the Edge Patching method in Multislice-Only 
mode” (the EPMO method) can be used. 

When the computation program is shifted to mul- 
tislice-only and reflection mode, the results shown in 
Figures 11 and 12 are obtained. They correspond to 
Figures 9 and 10. All of the calculation conditions are 
the same as those for Figures 9 and 10, except for the 
input trial wave function which is now tilted plane 
wave (30 mRad) instead of the BWO solution of a per- 
fect surface. The results shown in Figures 11 and 12 
are clearly consistent with those shown in Figures 9 
and 10. However, there is now only one plane wave 
component left in the patched area which acts like an 
“infinite plane wave source.” This simulates the real 
condition of an electron microscope or a RHEED cam- 
era which usually has a beam size of several tens of 
nanometers. The results show that an incident beam 
with this size can be modeled as an infinite plane wave 
not only in the Laue case but also in the Bragg case. 
The first ones of RHEED patterns in Figure 12A and B 
do not show any diffraction spot because there is only 
one incident wave component masked to allow for a 
clearer presentation of the Bragg spots. In real exper- 
iments, the incident beam is cut off by the crystal edge. 

Analysis of the Higher Order Laue Zone Using 
the EPMO Method 

For the EPMO method, only the plane wave compo- 
nent in the patched area is significant to the multislice 
calculation and the function of the patched edge area is 
only to provide an infinite plane wave source. It does 
not require the wave fields inside and outside the crys- 
tal to be 2-D dependent and the multislice iterations to 
be Picard iteration-like. An analysis of higher order 
Laue zone requires sampling of the crystal potential 
along the beam direction, and the phase gratings for 
each slice are no longer identical to each other. Here, 
each iteration is no longer Picard iteration-like and the 
wave field is no longer 2-D dependent in a distance of 
one unit cell in the incident beam direction. However, 
for any two slices separated by a distance of an integral 
number of unit cells in the incident beam direction, the 
above two arguments are still valid. As matter of fact, 
the variation of the wave fields in a distance of one unit 
cell in the incident beam direction for HEER is small, 
because the effects of the higher order Laue zones are 
weak. Figure 13A is the result calculated for the Au 

Fig. 11. A, B: Wave fields calculated for the same system and 
conditions as those for Figure 9, except that the EPMO method is 
used. 

(110) surface using the EPMO method. The incident 
angle is 30 mRad and the absorption is the same as 
that for Figures 2 an_d 3. The crystal potential is now 
sampled along the [110] zone axis. The sampling rate is 
2,78 ptsi& i.e., eight slices for each unit cell along the 
[1101 direction (2.88 A). The series of output slice num- 
bers is: 1, 800, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 
7,000,8,000. The iteration thickness is up to 2,884.0 A. 
The sampling was done by applying a solid Gaussian 
distribution, G(x) = ( c / v ‘ ~ T u ) ~ x ~ ( - x ~ / ~ u ~ ) ,  onto the oc- 
cupancy parameters of atoms in each phase grating; c 
is a constant for normalizing the total occupancy of 
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Fig. 12. A, B: RHEED patterns corresponding to Figure 11. 

each atom to 1; s is set to 0.125. The last three slices in 
Figure 13 show the stationary solutions and they are 
invariant with the thickness. 

Figure 13B shows the RHEED patterns including 
the first and second order Laue zone. They are the Fou- 
rier transforms of the vacuum waves excluding the 

patched edge area of the last slices in Figure 13A. For 
showing the weak spots of the first and second order 
Laue zone, the incident spot and the Bragg reflected 
spots of the zero order Laue zone have been saturated 
(Fig. 13Ba). These spots become streaky due to numer- 
ical errors. Especially, the incident spot turns into a 
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Fig. 13, A: Wave fields calculated for Au (110) surface-using the EPMO method. The zero Laue 
zone is [1101 and the crystal potential is sampled along the [1101 direction. Other calculation conditions 
are the same as those for Figure 3. B RHEED patterns corresponding to A. 

long bright line. They should not be considered as real 
effects of HEER. For a clear presentation of different 
Laue zones, the incident spot is excluded and the zero 
Laue zone is shown in Figure 13Bb and the first and 
the second Laue zones are shown in Figure 13Bc. The 
symmetry of the zero order Laue zone is well preserved. 
The asymmetry of the first and second Laue zones is 
quite visible. This is due to the existence of numerical 
errors after 8,000 iterations. The intensities of spots in 
the second Laue zone are so low that they are more 
easily affeckd by numerical errors. The sampling rate 
along the [110] direction, 2.78 pts/A, is much lower 
than the sampling rate in the plane perpendicular to 
the incident beam (10-15 pts/A). However, the results 

clearly demonstrate the capability of the EPMO 
method for surface investigation using the information 
of higher order Laue zones in HEER. 

LIMITATION OF THE BWO SOLUTION 
Failure of the BWO Solution for Au (110) Surface 

For a long time, the effects of surface potential and 
surface topmost structure on HEER have not been 
studied systematically due to the lack of a reliable 
method to simulate HEER for an arbitrary surface. 
This problem is crucial to the Bloch wave method be- 
cause it is basically a method for bulk materials and is 
not sensitive to the structure of boundary. If the effects 
are important, the BWO solution for HEER will be 



384 Y. MA AND L.D. MARKS 

Fig. 14. A Wave fields calculated by using the BMCR method 
with the edge patching method for Au (110) surface. B: Wave fields 
calculated by using the EPMO method for Au (110) surface. The series 
of slice numbers for both A and B are: 1, 100, 300, 600, 900, 1,000, 
1,100, 1,200, 1,300, 1,500, 1,700, 2,050. Both A and B are calculated 
under the same conditions as those for Figure 13, except that the 
crystal potential is not sampled along the [ l l O ]  zone axis. 

questioned. Comparison of the BWO solution and mul- 
tislice in the Bragg case for Au (001) surface as dis- 
cussed before (Ma and Marks, 1990a) showed that the 
surface potential and the surface truncation do not af- 
fect the consistency and quality of the BWO solution 
significantly. However, further studies show that this 
conclusion cannot be extended to the case of a surface 
with higher Miller indices as one might expect. 

Figure 14A and B are results calculated for the Au 
(110) surface using the BMCR method and EPMO 
method, respectively. The size of each slice in both A 

and B is 1 0 e a  x la. The surface is at (3/4,0) and the 
sampling array is 1,024 x 64. The coordin_ation and 
beam geometry are as the following: t h ~ [ l l O ]  zone is 
taken as the zero Laue zone; the z axis [110] goes from 
the left side to the righ? side pointing toward the inside 
crystal, the y axis [110] is parallel to the inward 
normal to the page, and the x axis is along the [OOlI  
direction. The incident beam is along the y axis and the 
beam azimuth with respect to the yz plane is zero; 
2,050 iterations have been calculated and the total 
thickness of each calculation is up to 2,956.1 A. The 
series of output slice numbers are: 1,100,300,600,900, 
1,000, 1,100, 1,200, 1,300, 1,500, 1,700, 2,050. The two 
solutions are perceivably close to each other, which 
means that both the BMCR method and EPMO method 
can provide well converged solutions. The most impor- 
tant feature of Figure 14A is that the severe deviation 
of the BWO solution from the stationary solution for 
thk Au (110) surface has been revealed. In other words, 
the BWO solution for the Au (110) surface is no longer 
a good trial function of multislice iterations. 

Figure 15A and B show the RHEED patterns corre- 
sponding to Figure 14A and B, respectively. They are 
the Fourier transform of the vacuum waves excluding 
the patched edge area in each slice in Figure 14A and 
B. Figure 15 indicates that there are significant differ- 
ences between the first pattern (the BWO solution) and 
the last pattern in A (the BMCR solution) or B (the 
EMPO solution). For the diffraction pattern of the 
BWO solution, there are three Bragg reflected spots: 
one specular spot and two (02) spots. The (01) and (03) 
spots are missing. With the process of iterations, the 
(01) and (03) spots in Figure 15A gradually emerge and 
the intensities of two (02) spots finally reduce to near 
zero, while Figure 15B only shows the (01) and (03) 
spots. 

A Qualitative Explanation of the Failure 
The RHEED patterns shown in Figure 15 give a 

clear and important qualitative explanation of the fail- 
ure of the BWO solution for Au (110) surface. The BWO 
solution is basically a solution for a bulk crystal. As far 
as the bulk material is concerned, the distance between 
two adjacent atomic planes parallel to the zone axis 
and scrface normal is a12 for both the [OlO] zone and 
the [110] (Fig. 16). Therefore, the singular Bragg re- 
flection spots (01) and (03) corresponding to the inter- 
planar distance a should be extinct, as indicated by the 
BWO solution in Figure 16A. Nevertheless, HEER is 
primarily a surface phenomenon and sensitive to the 
structure of the top atomic layer. The materials joining 
the diffraction process are limited to several top atomic 
planes. As indicated by Figure 16B, for the Au (110) 
surface, the atomic distance of the topmost layer is a 
instead of a/2 for the Au (001) surface. This is the major 
reason for sharp intensity decline of the (02) spots and 
strong emergence of the (01) and (03) spots in the 
RHEED patterns of the EPMO and BMCR solutions. 
This argument can be further verified by Figure 17 
which is the result calculated by using the EPMO 
method under the same conditions as those for Figure 
14A, except that the absorption is set as 0%) i.e., no 
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Fig. 15. A, B: RHEED patterns corresponding to Figure 14A and B. 
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Fig. 16. Schematic diagram of atomic arrangement of Au in the 
[OlO] A and [110] B zones. 

imaginary potential. This allows the atoms deep in the 
crystal to join the diffraction process. Then the diffrac- 
tion process becomes the mixture of surface phenomena 
and bulk phenomenon. The patterns of the vacuum 
waves in the last four slices in Figure 17A are perceiv- 
ably different from those in Figure 14A. Figure 17B 
shows the RHEED pattern of the vacuum wave exclud- 
ing the patching edge area in each slice in B. The re- 
emergence of the (02) spots in Figure 17B is due to the 
bulk diffraction and the spots (01) and (03) are still 
there, which represent the diffraction process of the top 
atomic layers. 

For the [OlO]  zone, the bulk process and surface pro- 
cess have the same effects on RHEED pattern, as in- 

dicated in Figure 16A. Then the BWO solution becomes 
close to the true stationary solution obtained by the 
BMCR method or the EPMO method. Here, we can 
have a straightforward deduction: the intensities of the 
Bragg spots in the RHEED patterns are generally pen- 
etration depth related, except for a simple surface like 
the (001) surface. The deeper the incidence electrons 
penetrate into the crystal, the more bulk effects there 
will be in the RHEED patterns. 

A Cure of the BWO Solution for the Surfaces 
With Higher Miller Indices 

In terms of the theory of Bloch waves, the source of 
the error can only be the boundary match. As shown in 
Figure 16, the flat surface match for the (001) surface 
is a good approximation, but it is poor for the (110) 
surface. The flat surface match actually can be re- 
placed by a periodic non-flat surface match, which is 
numerically feasible. Here, we give an analytical der- 
ivation of it. For the flat surface match, we have the 
following two equations: 

where Q, is the wave function of the wave outside crys- 
tal, T the wave function of the wave inside crystal, the 
surface is set in the xy plane, and the surface normal is 
parallel to the z axis. For a periodic non-flat surface 
match, we have: 
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Fig. 17. A Wave fields calculated by using the EPMO method under the same conditions as those for 
Figure 14A, except that the absorption is set as 0%. B RHEED patterns corresponding to A. 
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CONCLUSION 

where f(x,y) is a 2-D periodic function and its ap- 
proximate form can be easily derived. Both Equations 
13 and 14 can be expanded into the form of Fourier 
series: 

Zg46g,o, + Rg.)exp[i2dkOtt + gt’)-~l 
exp[i2.rr!kOzf + gZj)f(x,y)l 

=Zj&’Z CgO) ex [i2dkot + gJ-71 
expfi2dko$ + g,)f(x,y)l (15) 

C.g&,* + gz’)(6 + Rg,) 
exp[i2dkot. + g,’)~Iex & ? d k O 2  + g,’)f(x,y)l 
=2j.j,ci)Zg(k>’ + g,)C B exp[i2dkOt + gth1 

exp[i2dkOzfi + g,)f(x,y)l (16) 

where C is the coefficient of a plane wave component 
g of a dloch wave j, &) excitation coefficient of the 
Bloch wave j, R,. the coefficient of a Bragg reflected 
wave g‘, and 6 is Kroeniger’s delta function. 

The exponential terms with f(x,y) in Equations 15 
and 16 can be further expanded into Fourier series as 
the following, since f(x,y) is a 2-D periodic function: 

exp[i2dko,, + g,’)f(x,y)l = 

exp[i2v(kO,a’ + g,)f(x,y)l = 

where (Yg:,h’ and Pg,bci) can be calculated numerically. 
Substituting Equations 17 and 18 into Equations 15 
and 16 and letting g’ + h‘ = 1’ and g + h = 1, we 
obtain: 

Zhjcxg,,hjexp [i2dkotr + ht‘h1 (17) 

&,Pg,h“eXP[i2dk0t + &)‘TI (18) 

where 

(1 = Xg,(6g,or + Rg,)~g,,l-g, (22) 

k0&1 Zg,(ko,f + gZ~)(6,,,~ + Rg,)ag,,l-g, (23) 

AIO) = 2 g C I3 u)p gs1-g (i) (24) 

= Z,(k,”’ + gz)Cg(i)pg,l-g(i). (25) 

8) and (, can be solved by Equations 20 and 21 and 
then R,. can be solved by Equation 22. Although the 
process as shown here is more tedious than that for the 
flat surface match, the 2-D periodic surface match in 
principle can be done. In other words, the BWO method 
can be applied for not only an ideal flat surface model, 
but also all kinds of periodic non-flat surface models. 

The argument of current flow appears to clear the 
confusion around evanescent waves in the “band gap.” 
The consistency between the BWO solution and its 
multislicing for an Au (001) surface has verified the 
validity of the argument of the current flow. The 
application of the BMCR method to the problems of 
surface steps and surface reconstruction or adsorption 
has demonstrated the usefulness of the method. The 
two most important characters of HEER-2-D de- 
pendence of the wave fields and the Picard iteration- 
like character of the multislice calculations in the 
Bragg case-have led to the emergence of an edge 
patching method or EPMO method. An infinitely 
convergent true stationary solution for any arbitrary 
surface for HEER has been obtained using the new 
method. 

The failure of the BWO solution for surfaces with 
higher Miller indices is troublesome, but the EPMO 
method is simple and accurate enough to be a quan- 
titative method for HEER analysis on any kind of 
surfaces, as far as the zero Laue zone is concerned. 
The method has also shown its capability for dynami- 
cal analysis of the higher order Laue zones in 
HEER. 

However, so far the problems in HEER which can be 
explained by dynamical approaches including the 
BMCR and EPMO methods are still limited. It is obvi- 
ous that any RHEED pattern obtained in experiments 
is far more complicated and informative than any one 
simulated. The theory discussed here is only elastic 
and a lot of surface phenomena such as surface plas- 
mons, thermal diffuse scattering, strain fields, etc., 
cannot be easily taken into account in the theory. As 
far as the application is concerned, the reliability of a 
quantitative analysis using the BMCR and EPMO 
methods needs to be further tested in the application to 
real problems. For example, the quantitative analysis 
of disordered steps is not really as yet practical. The 
explanation and suggested cure of the failure of the 
BWO solution for surfaces with higher Miller indices 
still need to be further examined. There are still two 
basic experimental phenomena in HEER which remain 
unanswered, or incompletely answered, and merit fur- 
ther study: 

1. The source of two dimensional diffraction pat- 
terns observed in RHEED experiments. So far, all sim- 
ulated RHEED patterns are semi-circular type and 
consistent with most of those taken by using RHEED 
cameras. Some of RHEED patterns taken from sur- 
faces such as Au (111) and Pt (111) in a microscope 
show a clear two dimensional feature, which seems 
contradictory to the law of momentum conservation ac- 
cording to the elastic theory. 

2. The true source of “electron surface resonance.” 
All calculations by the BWO, BMCR, and EPMO so far 
do not show as strong intensity enhancements around 
the resonance conditions as experiments do. Before one 
can give a quantitative analysis on the “electron sur- 
face resonance spectrum,” the term “electron surface 
resonance” still means more as an experimental fact 
rather than a physical concept. 
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